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ABSTRACT

The Dbacsic principles of the Galerkin finite element
method are discussed anad applied to two different
forrulations; one using different dasis functions and the
other usiazg the vorticity——divergence form of the shallow
water eguations. EFach ‘formulation 1s compared to the
priritive form of the equations developed by Zelley (1€7€).
The testing involves a comparison of three finite element
prediction models using variable size elemeants. Equilateral
elements significantly improve the solution and are used ir
rost of the comparisons. The formulation using different
basis functions produces poorer results than the primitive

fcrrulatioa. The vorticity-divergence forrulation produces

syperior results vhile executing faster than the primitive-

medel. Fowever, it does require more storage anéd the
relaxation parareters are seasitive to the domaia geormetry.
The corputer {irplementation for the vorticity-divergeace

rodel is discussed and the source listiag 1s iacluded.
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I. INTROTLUCTION

Skuman /1978) claims that progress irn numerical modeling
0f the general circulation has been to some degree dictated

12 tke nast by the rate of development 12 the fleld of

computer technology. Eowever, the 1imited abdility to

varareterize the effects of small-scale processes in terrs
of large scale motions has been an equally important
liriting factor. Fssentially, the mal'or prodblem of numrerical
modeling of the geaeral circulatioan s simply thra*t of
producing a very long range numerical weather forecast.
Certalinly the equations used in the models must be more
sophisticated to-include those physical- precesses wkick - are
uzimportaat for a short raage forecast, but may dbecome
crucial as the lenzath of the forecast is extended. Another
area where conceatrated efforts have improved the forecast
involves the corputational techniques employed to
approximate and solve tkhe goveraiag equatioas of the models.
The motivation tehind this thesis is to investigate the
applicatioa of a relatively new computatiozal techaique to
the field of numerical weather precdiction. The irnite
elerent mrethod, loag established {a eagiieeriag, has deen
serisvsly considered only during the past decade 1in
meteorology. This method has great poteatial for applicatioa

in atmosdheric prediction models.
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A. BACKGROUND

The most comrmon nurerical iategration procedure for
weather Dprediction has been the finite difference method in
which the derivatives in the differeatial equations of
motion are replaced by fianite difference approxiratioas at a
discrete set of poiats in space and tire. The resulting set
of equations, with appropriate restricticns, caa thea bde
solved by algebralc methods. Until recently, the finite
difference method has been the workhorse 4in atmospheric
prediction models, from their first computer implementation
to the preseat.

W“ith the 1introduction of each new generation of

corputers, the 2ap between aurerical forecasts aad
atmcspheric observations has decreased. The rate at which
this gap decreased has slowed down aad appears to be
leveling of?. This would indicate that computer technology
may 20t be the oprirary obstruction to Y»etter aurerical
forecasts. In fact, bigger and faster computers alone Lkave
deronstrated their inability ¢to sigaificantly improve the
rumerical forecast.

For exarple, & mrajor 1limiting factor of finite
difference approximations {s the truncation error. The
National ¥eather Service 7 layer Primitive Equation Model
(7LPE Model), operational from 1966 to 1980, had truncation 5
errors which increased at a rate proportional to the square

0® the grid spacing. That 1s, the smaller the grid interval,

12
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the smaller the truncatioa error. To iacrease its accuracy
woulé require iacreasing the grid matrix deasity. This would
require increased corputer storage and corputaticnal tire.
State o0f the art corputers are capable of providiang these
ddditional resources.

The problem now goes bdeyoad o2aumerical teckaiques aad
computer technology. Operationally, the National W¥eather
service is a0t capable (due to moaetary restrictioas) of
providing a denser concentration o? atmospheric
obtservations. Therefore, with the present density of initial
data (observations) anéd obdjective analysis techniques
(zetting the data for grid points by iaterpclatiag from
observed data sources), reduciag the grid spacing further o2
the 7LPE Mode) does not significantly increase the accuracy
cf the solution.

This additional computer capablility can not bde utilized
using finite difference methods. Therefore, new nurerical
integration techniques must be investigated, such that glven
the sare density of observed data, superior sclutions are
produced.

Two alternative techniques, the spectral method and the
finite elerent method, have started to gaia attention. Zoth
the spectral and finite element methods require more
corputational time per forecast time step than does the
finite differeace method. For example, the finite elerent

rethod requires an equation sclver to iavert a larger matrix

13




2t eack tire step for each variabdle. Ia this sease, these
methods were held back by computer technology, bdut receat
advances ia computer tecknaology (i.e. larger azd faster
storage devices, multi-processors, etc) have made these
alternative numerical techniques competitive.

For 1long range weather predictions, the spectral method
dapolied over the globe or hemisphere is a =2atural retkod,
due to the existence of efficient transforms for the
aonliazear terms o0a spherical geometry. It also elimizates
the truncation error for the horizontal space derivatives
anad the noalinear instabdility (aliasiag). For these reasoas,
global spectral models have been developed and implemeanted
01 an operational 1level, replaciag the global fiaite
difference models.

Eowever, because the spectral harmonics are glotally
rather than locally defined, it is thought that for problers
of more detailed 1lirited area forecasting, the finite
elerent rethod 1s more suitable, Pioneeriag work to adapt
finite elerment methods to meteorological applications has
been done by Cullea (1973,1674¢ aad 157¢), Staziforth and
Mitchell (1977), Hinsran (1975) and Zelley (1976). The most
receat finite elemeat meteorological model at the Naval
Postgraduate School was written by Kelley (197€) with the
colladoratior of Tr. R.T. Williams. It is this study that
wvill serve as a basis for this thesis. The model written bty

Felley will bde altered and used foar comparative testing with
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improved finite elerent forrs implerented bty this author.
Some of the techniques and codes developed by Kelley are
é@lsc erployed in this thesis. Older (1981) develcped a
technigue to smoothly vary the grid geometry in the domain.
This technique is alsc irplemented toth on ZXelley’s model
and with the nrew formulation to give greater versatility

when testing the model perfcrmance.

3. C3JECTIVES
The objectives for this thesis can be divided intoc twec
categories: 1) reteorology, 2) corputer scieace. First, the
reteorological obdlectives of developiag imprcved finite
elerent forrs for shallow water equations are as follows:
1) - Older (1981) after collaboration with Dr.
M.J.P, Cullen, showed how equilaterally shaped elermeats
vproduced significantly tetter results than did other
triaagular elemeats. Yelley (197€) wused right triangular
elerents in the implemertation of a two-dimensional finite
elereat model using the priritive forr of the shallow water
equations. A considerable amount of small-scale noise was
observed ia the solution. Hereafter, this model, which was
developed by Zelley (1976), will DY»e referred to as the
priritive model. This first objective involves
re-implementing the oprimitive model using equilaterally
shaped elements aad comrparing the results to those {in

¥elley’s thesis.

f S



2) -~ Williams and Zienkievicz (19€1) presented rew

finite elereat techniques for formulatioas for the shallow
water equatisrns, which use differently shaped fuactions to
apprexirate the different dependeat varliatles, which 12
effect stagger the variab.es. Schoenstadt (1982)
deroastrated the advaatage of spatial staggeriag of

dependent varlabdles in finite 4difference maodels., The

application of this technique to fiaite element models is a
natural extension, and excelleat results were obtained by
Williams and Zienkiewicz (1981) from application of these
rew forrulatioas on linearized one dimensional cases. The
objective here is to implemeat the a21ew forms on the
L priritive model aad agaia do quanitative comparisoas of the
results.

2) - The major emphasis ian this study deals with the

irplerentation and comparisoa of the vortlicity divergeace
forr of the shallow water equations, which is descrived in
detail in Chapter III. This formulatioa has the ~followiag
advantages. First, the geostrophic adjustment process is
treated better thaa ia the primitive forrm of the equatioas.
Secondly, the velocity and height fields are evaluated at
the same grid poiat, where the best primitive forr recuires
staggering these dependent variables. And thirdly, a 1arge}
tire step is alloved due to the semri implicit form of the
equation. Agaia comparisons bdetween the results from the !

vorticity divergence aad primitive model are preseated.
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The computer science aspect of this thesis was primartily
devoted to the imrplementation of tke different models and
the <tyle aad architecture of the program., Fizite elerent
rethods require more computaticael time than do fiaite
d1fference rethods, 10t oaly 112 the solutica of the
equations, bdut also in the amount of corputation required to
evaluyate each terr in the equations.

The irplereatatioas of these two dirensioaal wmodels,
although complex when vieved from the surface, have a lot o?
geaerality and redundaacy i1 the operatioas requirel.
Versatile modules caa be written to ease the irplerentation
aad facilitate chaazges. The objective here is to efficieatly
irplement these new forms and demonstrate the utility of

these versatile modules for future implemeatations.

C. THESIS STRUCTURE

This theeis presents the results obtaiaed from tests of
the various finite element . formulations. The results are
corpared to those from the primitive model written by Zelley
(1S7€). Accompanying the results {s a detailed discussion of
the reformulation and irplerentation process.

Chapter Il of the thesis preseats a tutorial of the
finite elerent method and the area coordinates system used
12 the evaluation of the element iategratioa. The Galerkin
fizite element method used ia all the models 1s developed

and applied to the advection equation in one direasion.
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Chapter IIl presents the detajled description c¢f the
voerti~ity-divergeace shallcw water model. Eere the egquations
are skcwa anéd writtern using tae Galerkizn method. A
discussion of the corputational techanique used is preseated
along with the model’s physical parameters.

ch2pter IV opresents a descriptive overview of the
somputer implementation. The chapter 4iacludes a 1list of
options availadle for testing, a drief description of the
ratrir compacticn techaique aad ¢the formulations of the
versatile modules used to 1mplement the complex equations.

Chapters V through VII discuss the results obtaiaed fror
the J3ifferent experiments. Chapter V bdbriefly describes the
priritive model used for all comparisoas aad the results
from changing the element shape to equilateral triangles.
Chapter VI reformulates the primitive model so that the
geopotential 1s staggered with respect to the velccity
variable. For simplicity, the contiauity equation is also
linearized. Chapter VII compares the results <from the
vorticity-divergence model developed in Chapter III to those
from the primitive model.

The last chapter sumrarizes the results from all the
experirents aad 1ideatifies what areas require follow o2
work. The source code for the vorticity-divergeace model 1is

presented in Appendix A.

18
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I1. FINITE ELEMENTS

s is often the case with aa original developrent, it is
rather difficult to quote aa exact date ca which the fialte
elerent method was invented, but the roots of the method can
be traced béck to these separate groups: applied
rathematicians, physicists and engineers. Since the early
developments of the fiaite elemeat method, a large amouat of
research has been devoted to the technique. However, the
finite element method obdtained 1its real imrpetus dy the
irdependent developments carried out by engloneers. Its
esseatial simplicity in toth ophysical iaterpretation and
mathematical form has undoubtedly been as much behind {ts
popularity as is the digital computer which today perrits a
realistic solution of evea the most complex situatloas.

The name ~ finite element ~ was coined in a paper by
R.¥. Clough, in which the technique was presented for plane
stress analysis, as discussed in Bathe (197€). While finite
element methods have made a deep impact via the fleld o?
s0lid mechanics, where it can te said that today they
represeat the geaerally accepted method of discretizing
continuum prodlems for computer-based solutica, the same
appears 210t to be true ia fluid mechaalcs or atmospheric

prediction.
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Numerous fiaite element formulatioas are curreatly
availatle. Strang (1973), Norrie (1573) and Zienklewics
‘1S71) present detalled theoretical discussioans of each. The
Galerkinr method. the most popular finite elemeat rethod, 1is
decscrided ia detall btelow and used 121 the ejuatio:n

formulation later.

A. FINITE ELEMENT CONCTPT

The problem of solving partial differential equations
can bYe specified 1in one of two ways. Ian the first, finite
difference methods specify the dependent variables at
certain grid points in space and tire, and the derivatives
are evaluated using Taylor series approximations. Secondly,
the calculus of variation requires the miaimization of a
functional over a domain, where a functional is defined as a
variational integral over the domain.

The calculus of varlation approach creates a purely
vhysical rrodel where the functional equivaleat to. the known
differential equatioas are kxaowa. Its major disadvantage 1is
that it 1limits the method only to those probdlems for which
fua~tionals exist. Fiaite elemeat methods, an exteation of
this method. derive mathematical approximaticns directly
fror the differential equations goveraing the probdlem. The
advantage here 1is that it extends the method to a range of
problers for which a functional ray a0t exist, or has 20t

beenr discnvered.
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The finite elerent method civides the domain 1iate
sutdoraias or fiaite elereats (usually of the <came forr).
Nodes are located along the Ddouandary of the elereats,
usually at the element vertices and at strategic positions
(midside, centroid, etc.) in tke interior and on the sides
of faces of elermeats.

Commonly used elements are triangular, ©volygonal or
polyhedral 4{ia fecrm for tvo-dimensional probdlems. The choice
0° elements depends on the type of problem, the naumber of
elereats desired, the accuracy required and the availadle
computing time. To begin with, the element must te abdle to
represent derivatives of up to the order required ia the
solution procedure, and to guarantee coatiauous first
derivatives across the element boundaries to avoild
sizgularities. Triaangular elements are emrployed 1in this
thesis bYecause they can be used effectively to represeat
irregular boundaries, azad/cr geometry, aad also to
concentrate coordinate functions in . those regions. of the
dorain vhere rapidly varying solutions are anticipated.

Consider the prodlem of solving approximately the

di%ferential equation
Lln) = £{x) 11-1

vhere 1 is a differential operator, u the dependent
variadle, and f(x) is a specified forciag fuactioa. Suppose

that I[I-1 is to te solved in the domain a § x % b and that

—— e ey 7
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appropriate bdouadary coanditions are provided. The residual R

is forred from II-1 as follows:
L(u) - f(x) = R 11-2

The critical step is to select a trial farily cf
approximate solutions (the members of a trial family are
cften called tasis functions). The basis fuaction is
prescrided ‘functionally) over the domain in a piascewise
fashion, element by element, and are generally a comrbination
of lov order polyzominals. A o1e dimeasional exarple 1is
shown in Figure 1, vherein the doraian (x axis) is divided
iato six elements (line segmeats) A through F. The basis
functions are 1linear and one is shown for node 4 oaly in
Figure 1. The fuactiona has a value of unity over aode 4, aad
decreases linearly to is zero at nodes 3 and 5 aad zearo
elsewhere.

Consider a series of 1linearly independent Dbasis
functions VJ (x), as in PFigure 1. Now .u(x) ~can te

approximated with a finite series as follows:
(x) = =9V
ulx) §¢jvj(x) ¢J 3

vhere i{,is the coefficient of the Jth basis function and has
a véiue equal to u at node J.
Substituting this approximate solution II-3 wherever u

appears ia the differeatial equatioz II-1

L(¢JVJ) - f(x) =2 I11-4
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The best solutioa will ©bYe one which 1ia some sease
reduces the residual R to a minimum value at all points in
the dorain. Zy definition, the residual ottalazed wusiag *he
exact differential equation is identically zero everywhere.
The residnal R, formed in equatioa II-4, is minirizied wker
multiplie¢ with a weighting function, int2grated over the
dormain and set equal to zero. This process is known as the

weighted residual method
b
I RW dx = 2 I1I-5
a

where W is the weighting function and is referred to as the
test fuaction 12 the following developmeat. The welghted
residual method minimizes the errors of the residuals, such
that the summation of all the positive aud 1egative errors
add to zero.

The Galerkin method, the most popular finite element
method, is more generecl in applicaticn and is a specliel case
of the method of weighted residuals, as discussed Ly Pirder
and Gray (1977). The requirement imposed on the welghted
residual method forriag the FJalerkia rethod is:

* the test (weightiag) functioa be equal to the
basis (trial) fuactioa W = V , This process
leads {in general to the best approximatioa of

the solution.
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The final Galerkin form is obtained by substituting II-4
iato II-E, yielding

> b
f’n’iL(¢jVj)dx - Jvif(x)dx =2 I1-£
a a

I# this procedure is repeated for N poiats ia the dorai:z

a system with N equations and N urnknowns will be generated.

3. GALERKIN APPLICATION
The following example taken ia part from Haltiner and
Williams (1580) applies the Galerkia rethod to the advection

equation with linear elements

du du
—_—- == 2 11-7
ot ox

This equatioa 4is depeadeat ia bdoth time and space. The
treatrent of time variation is = 1important for most
reteorological predictioa probdlems. The Galerkia rethod 1is
not applied to the time dependence because it s rmore
coavenieat to use fiaite differences 12 time,as is doae with
this example later. The same treatment is applied tc the
progaostic equatioas later, where two finite differeaciag
methods are employed to do the time integration.

The 3alerkin procedure represents the dependeat variabdle

ul{x.t) with a sum of functions that have the prescribved

25
TRy - R —— ——
,‘\- - " -

o v e R e 4 B




spatial structure as in Figure 1. Approximate u(x,t) with

tte finite series as follovws
gl = 5 . V. = . -
a{x,t) J§1¢J(t)VJ(x) ¢j(] 11-8

wvhere the coefficient ﬁj (t), a fuaction of tire, is the
scalar value of u at node j. The basis fuactions, Vj(x), are
functions of space only and } equals 1 to 7 for the exarple
in Figure 1. The repeated subscript in tkis Zorr implies a
sur cver the repeated subscript.

The Galerkia equation for the advection equation II-7 is
obtained by setting L = c(d()/8x) and substituting 1ia the

approximate solution II-8 wherever u is fouad.

b
N 7] AV,
I jv dx+c2¢.f—h - I1-9
= 1 at j=1 v ) ax
a

where { = 1 to N, V, the test fuanction andAvjthe<basis

i
funztion. The domain of integration is given by a # x € b,
aad the integration is doae i1 a piecewise fashioa, elerent
by elerment.

Tn this one-dimensional'case. an equatica like II-C is
writter for each node, i. Considering node 4, what are the
possidle non-zero contridbutions from equation II-8? Figure
2 {llustrates the basis and the test function {nteractioa

during the piecevise integration process. Z¥rom the
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Basis Function Test Function
1 'l\\
’
- ’
jJ=1 L ~
0 - e A h Y i - |
1 A 2 B 3 € & Db 5 E 6 F 7
I’A\\
- 2 7’
j ,, . \\
A 1 N 1 -J
2 4
J=3
t —d
i=b
L _ 4
J=35
L J
j=6 .
L .
'l \\ !
J -7 ’I \\
P -
L L —_—i 1 N ]
1 A 2 g3 ¢ 4% p 5 g 6 ¢ 7
Figure 2. Basis and test function interaction
during the plecewise integration process.
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1efirition cf the basis and the test function, 1locally
fefinred as unity at node j aad linearly decreasiag to zero
at } + 1 and zero elsewhere, the only non==z8:r0
contritutions are made when ! = 3 over elemext C, J = & over
elements C and T, and J = £ aver element D.

The evaluatior of TII-8 for {1 = m, which is givea i2

Baltirer anéd ¥“illiams {(1981), leaéds to the equation:

14 (u +4u +u ) +_¢ (u -u_4) =2 II-12
T m+l m m-1 > ax m+l m-1

The bdoundary poeints, which in this example are nodes 1

and 7, are evaluated in the same way as the interior aodes,

with the exceptioa that cyclic coaditioas are imposed.

The time discretization-of II-12 is done using a - finite

di¢ference scheme. Applying leapfrog time differencing gives

the following ecuation

nel _ o n-l n+l _ n-1 el _ n-l
lzﬂt(uml uﬂ"’l * 4‘“1! uﬂ ) * Lﬂ-l um-l)
. 24'_.(\1?_,,1 -ug ) =2 II-11
ax

The resultaat equation set, in matrix forr, coataias a2
NN matrix where N is the number of nodes.

The transition from oaze~dimension to two is
mathematically 1identical. The domain is now subdivided {nto

fiaite areas, vhich are triangles 12 this irplemeatation and
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the basis functiors are 1linear. Eowever, row they are
pyrarid skaped with value uaity at the center azd decrease
to zers at the surrounding nodes, and are zero elsewhere,
Figure I shows this basis fuactioa for node 28 outlinzed 2
heavy bdlack. “he value at any node again can bde aporoximated
by II-%, where } ranges over all nodes coanected to node |
inc1nudiag 1 iteelf. The  <connectivity for node { = 28 in
Figure 2 ts J = 15,1€,27,28,29,39 and 43.

The integration is still over the eatire domain. With
both the ©basis and the test function zero over the dorain,
except locally over each element, the global integration can
te performed by iategrating locally over each elemeat. By
definition, this integration can be expressed as an inner

product of both functicns (i.e. bdasis, test) as follows:

A
Using this definition and the repeated subscript

notétion equation 1I-9 becomes
Bi<V o Wy> + ¢ Fi<Vg V> = 0 I1-13

where the dot implies differeatiatioa with respect to time,
and the second subscript implies differentiation with
respect to the second subscript. The local integratioa may
be calculated directly from exact expressions derived <from

area coordinates descrided in detail in the 2ext subsection.
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38
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14

Figure 3. Basis function for node 28. The
shaded area is the complete basis function
and the VJ s where j = 15, 16,27,28,29,39,40
are jth node basis functions for node 28, The
dashed line at node 28 has length unity.
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Ia <currary, the Galerkia procedure iavolves subdividinag
the d9main into finite elements, approximating the derendent
varlables by a linear cordinationa of lcw order polyizorials
and substituting them 4into the equations. The equation is
rultiplied ty a test fuaction, iantegrated over tke extire
domain and finally the resulting system of equations is

sclved.

C. AREA COORLINATZS

While the Cartestan coordinate system {s the natural
choice of coordinates for most two dimensional problems, it
1s not <convenient when working with triangularly shaped
elereats. It 1s therefore necessary to defiae a special set
of normalized coordinates for a triangle. Area, or natural
coordinates as they are commonly called, reduce the
forridabvle task of integrating products between the bdasis

and test fuactions and their derivatives over a triangular

elerent and result in easily cormputadble -and exact:

expressioas.

The following development is taken imn part fror the
forrulation by Zilenkiewics (1571). Coasider the triaagular
elerent {llustrated in Figure 4. There is a one~to-one
correspondeace betweea the Cartesiaa coordinates (X,Y) aad
the area coordinates (LI'LZ'L3 ) for the element. Let A
denote the area of the triangle and A, A and A3 the areas of
the subtriangles in Figure 4 such that A = A1+A2*A3.

31

- e R A e s e T e o P
Tl

.

. e————— =




(0,0,1)
Y (x5,%5)
3

(0,1,0)

P(X,Y) or

1 Pl Tpely)
(x4,1,)
(1,0,0)

Mglk. Cartesian vs. area coordinates
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Mg. 5. Transformation to area coordinates




The relationship betweez a poiat P(X,Y) iz Cartesian
ccordinates and P(Li' Lz, L3) ian area coordinates can te

seen by the followiag traasformatiocas

I =L,Xx +LX +L3x
T=17 +«+ L1 + LBY 1I-14
1 =1, *L,+ L3
where L1 = fA ’ L2 3.52 aad L3 ='fj
A A A
and
L, = (20 + p,X + a47) /2
L, = (24 + dX + a,7) /24 II-18
Ly = (20 + dyX ~ aqY) /24

vhere 2A is twice the area of the triangle and the a“s and
b‘s are defined as in Figzure 5.

It is vworth notiag that every tuple (L,, L,, Lq )
corresponds to a unique pair (X,Y) of Cartesian coordinates.
Ia Figure 4, L1= 1 at vertex 1 and 2 at vertices 2 aad 3. A
linear relation exists between the area and Cartesian
coordinates vwhich {implies that values for leary lizearly
over the triangle with a value one at vertex 1 and a value
of zero at vertices 2 and 3} and sirilarly for Lpand L3.
This demonstrates how each component in the tuple (Li' Lz, LJ)

behaves over the triangle as do the linear basis and test

functions over the element, as was seen in Figure 4. Clearly
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vhere V, 1s a linear function of the Cartesian coordinates
(1.e. bvasis, test).

lienkiewicz (1971) shows that it s rossitle to
integrate any polynorial in area coordinates wusing the

simrple relationship

m! a! ol
jfl*: Ly 13 dxdy = 24 11-17
(m +#n +p+2)
A

where m, 1 and p are positive 4{iategers and A 1{is the
elerentary area. For an example of this integration
technique usiag iaazer product notatioa, equatioa II-1Z s

evaluated as follows

2 2! 2! @! A
Vi dxdy = 24 = - 1 =3
(2 +2 +0 +2) €
A
T..7,> =
31 11 11 o1 A
vV, dxdy = 240 = — 1 £
(1 +1+0 + 20 12
A
II-18

The differential operations i1 area coordizates follow

directly “rom the differentiation of (II-1%) where

N d
—-= 3 £ - 1I-1¢0
ox i=1 24 3L1
aad
3 a
—-—= 3 4 - 11-20
¥y  i=1 24 3L1
34
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is explained earlier (see Equation II-1€), V,is a linear
fvn2tion ‘i.e. basis, test) which equals a compoment I, of

the area coordinate tuple. Therefore

-1 @ 1f L # ]
——?J = II"Zl
bLi 1 i 1 =}
Consequently ij'bx for § =1 s
v by OV by b, O b
vjx = —j = —1 —1 + _3 1 + —3- 1 = —1: II_22
ox 2A aL1 22 L2 24 L3 2A

2 2

As an exarple, consider the inner product <vjx.v1> at

vertices J = 2, { = 1. This integration is evaluated as

JI'bz
<7 V> = v, dxdy
2x'" 1 24 1

A II1-23
b 1! 2! @! b

= -z 2A = —2
248 (1 +02 +2 +2) 6

Therefore aany iazer product {2 the formulation caz be
readily evaluated using area coordinates. Another benefit of
usiag this coordizate system is that all of the iiner
products are functions of space oply and need bde computed

oaly once.




III. SEALLOW #ATER MCLTL

The governing equations fer this model are derived by
rekine several simplifyiag assurptioas on the primitive
envatisns 9¢ motion, whizh then give the barotropic shallow
water equations. Eowever, as rmrentioned previously, tae
shallow water equations describe many significant features
¢f the large-scale motion of the atmosphere, and therefore
have been used ia nurerous experimeats over the years.

The verticity-divergence form of the equations has
several advaatages. Williams (1991) has shown that the
geostrophic adjlustment process i{s treated much bvetter with
the verticity divergence formulation than with a direct
treatment of the primitive form of the shallow water
equations, such as was used by ZXelley (187€). This

formulation also allows the velocity components and the

‘height to be carried at the sare nodal points, whereas the

best scheme for the primitive form of the equaticas requires
staggering of the fields, as seen in Schoenstadt (168@). The
vorticity divergence form of the equations 1is also
convenient for the application of semi-imrplicit

differeacing, which saves coasiderable corputer tire.
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A. GCVERNING ECUATIONS
™e primitive form of the shallow water equations {n

Cartesiar coordinates is

of -] 9
— +0} = - —(fu) - —(fv) I1I-1
.} ox oy
o ) [-):¢
a—— - - — + Qv - e III-Z
ot 3x ox
v 3 K
—_ = - — =~ Qu =~ - 111-3
at dy oy

Tquatioa (III-1) is the coatinuity equatioa aad the I111-2
and I1I-3 are the momentum equations, respectively. The

variablec are defined as follows:

¥,y - the spatial coordinates of the domain
u,v - components of the wind vector
) geopotential = (gravity x free surface heigkt)

49,000 metersz/seconds2

- mean geopotential
time

- kinetic energy

- absolute vorticity | + £,)

relative vorticity

* B nn =

- coriolis force (mid-channel f-plane)

(=}

divergence

The shallow water equations can be written in

vorticity divergence form as follows:
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ap ° ?
— + Dp = - —(fu) - —(fv)
ot ox f [ ¥s p
-5 d -]
— = = —(a(j - —(v¢)
ot dx oy
-2y ) 9
— + PP = - —(v0) - —(uC) - v3x
ot ox oy

III-4

IIT-5

IT11-6

where JII-4 is the sare continuity equation as III-1, III-5

is the vorticity equation and III-€ 4is the

equation.

divergence

Jecause of the vorticity divergeace forr

equations, it btecores necessary to solve the time

of the

dependent

variables 8 aad T 421 terrs of ¥, the strear fuaction

(retational part of the wind), and X, the velocity potential

(divergent part of the wiad). The 1iaitial 2ields

model will be in terms of ¥, X and #.

for the

The followiag diagnostic relatioaships are defined and

used later in the solution of the equation §et.

u=-‘!y+'x

x'
v = Yx+ Iy.

where the subscr.pt implies differeatiation,

'.12"‘ Vz

K = kinetic energy,

-

4
eC = u(s® + 1),

e = v(8 + ¢,

= fu,
B = pv,
38
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9= vV, II11-14
D = »2%. I11-1%2

3. ICUATION FORMUIATION
The Galerkir method described {in Chapter II s now
aoplied to weauationas III-4 through III-15. For ease of
corpreheasion, the shortaand ianer product notatioa 2s in
II-12 will ©bPe used to simplify the equatioas. The detailed
Galerkin formulation will be shown for equation III-7, the u
corponeat of motion. The rethod follows directly from the
exarple in Chapter II of this thesis, which ia turn follows
i1 part from Kelley (1576) aand Ealtizer aad Williams (1S81).
Consider equation III-7 ard assume that each variabdle u,
Y and X is anprox;rated by
U= oug Vj'
b 4

\YJ VJ ’ ITI-1€

Ij Vj '

where the repeated subscripts iadicate summation over the
raazge of the sutscript. Subdstituting these approxirate
solutions into III-7 yields

[

9
Y = — "———I -
LJVJ ay"l’J‘IJ) ax‘ljvj) I11-17

Since only the dasis function VJ ts a ‘function of <space,
I111-17 mray e further simplified by factoring out the tire

depeadeat coefficients.
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The next step requires multiplying by a tesv function ¥,

as discussed in Chapter II, and integrating over the area

domain
v
v = - -]
uj f( ijidA ‘ijf 37 Vi da
A A
BVJ
+ Xj —_ V1 éa III-12
dx
A

The ®inal form in inrer product nctation is
(4] v =z - N . S -1C
.lj ‘j.vi> «Jvay.vi> + <va‘ix.vi/ III 1-

where the double subscript implies differentiating with
respect to the secoand subscript.

The three prognostic equations {III-4, III-Z and III-€)
are sirilarly advaaced using tke Galerkia techaique to

become, respectively:

<¢ij,v1> + § L4045,V > = = <ogly WUy > - <pjvjy,vi> 111-22
8.¥..7,> = =<(ug),%.,V.> = <(vC),V.,V, >III~
A v,> < uo)j ix v, v )va,vi I11-21
n - 2 N = ( - {p A
<njvj.v1> <¢j" LD Y (vc)jzjx.vi> .(LQ)ijy.Vi>
+ CEVET LT 111-22

where +¢° {¢ the Laplacian operator and the dot implies
differentiation with respect to the time depeadence 1=
I111-4, III-S and III-€.

Sirilarly, Galerkin equations are forrulated for

equations I1I1-7 through III-1%,
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TIMI TISCRETIZATION

The equation set III-22, III-21 and III-22 {s arranged
<o that all the terms on the left hand cide caa be treated
irplicitly, and all the terms on the right hand side can be
treated explicitly. The explicit tire integration will te
done ty the leapfrog difference method. Ts start the time
integration, two forward half steps are takien, after waich
the full leapfrog schere is used for the remalader of the
forecast period.

The vorticity -equation III-21 is solved {aéepeadently
fror III-22 or 1III-22. However, III-22 and I11-22
(zoatizuity aad divergeace equatiozs, respectively) are
coupled, To explicitly solve either, decoupling of the
equations 1is necessary. Ia this thesis this 1is doae through
algebraiz substitution of III-22 (solveéd for D(n+l)) 4into

I17-23., COCnce the tire iategratioa i< performed 22 III-2@,

"4

I1-22 can bve solved “or D(n+l) using the ¢ (n+1) value.

The final prediction equations are

+1
¢nj {<va'V1x> + <VJy .Viy) + C(Vj.Vi>] =
- (erey) ™! - (epRy) ™Y
Ind n- - ~ = e
+ V¢J1<vjvvi> A-/J %Vj.li>
n-
- ¢j 1[<V jx.Vix> + <ij.Viy>]
© = 2l Vg > = (a0 <YLY, D)
n
- 3P gV >+ (B9 §<T ¥, D)
111-23
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where & = 4//2at) , B = A/§ , C = B/(2at) ard [BLRY] is the

geostropkic touadary contributioa, see Section 3.

n+l n-1

= 200 L) <y, Ty >+ (vQ)<¥ 7y 3] I11-24
n+l _ o=l nel 2 N
Dj ’.‘.:j.vi> = EJ <VJ.V1> + (At/2)[¢3 (44 Vjovi/

-1, 2
S FTREVLN>  200 )<V >

- 2(uQ) <V, ¥y > + '2x§<v2vj,vi>1 I111-25

After these three elliptic equatioas are solved, the
history of the variabdles III-? through III-15 is updated.

A large time step caa be applied to this form of the
shallow water -equations due to the semi-implicit nature of
the equatioas. This is very importaat siace fiaite elemeat
methods generally require more computer time per time step.
The verticity-divergence forrulatica acts as a filter, which
slows down the high frequency waves in the =soluticn. The
two-dirensional advective stability criterion fcr a liaear
element, derived by Cullen (1973), was useéd to determine the
correct tire step,

a4x

fel V€

At =

- IT11-2€

vhereat is the time step in seconds, ax the shortest grid

spacing in meters and ¢ the fastest phase velocity.
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L. COMPUTATIONAL TECENIQUES

The final prognostic equation set requires the soclution
of @ Telmholtz equatiocn for J aad Poisson equatiozs for V¥
and 7. The mrost cormon method of solution wused by
reteorologists has beear the successive over relaxation
method (SOR) in which an izitial guess of the solution {is
made aad then »rogressively improved wuatil an acceptabdle
level of accuracy is reached. SOR 1is employed 1{ia the

solution of the equatioas,where III-23 caa be represented dy

v M {x} - cMI{x} = {bv) 111-27
and IIT 24, III 25 by
v2mlf{x} = (v} I11-28

where v2 the Laplacian operator, [M] = <vj.v1> ratrix, {x}
~ the dependent variable in vector aotation, C - coastant as
in III-23 and b} the right hand side o’ the equation or the
forcing function.

The mass matrix [M], dimensioned (axa), is a matrix of
coefficients whose rows are the equations of the system to
be solved. There exists a oae to one correspondeace tetween
the rows of the mass ratrix and the nodes of the dorain.
Each ejuation has a term (colura) for each aode, where a
non-zero term represents connectivity. Nodes are connected
{f they are both vertices of the same elermeat. Cbdviously (M]

fs a sparse matrix containing the inner products for the
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left haad side. Chapter ¢ of this thesis will descride the
matrix compaction procedure.

"he forcing function {t}, dirensioned {nxl;, iavclves
o2ly variables at the current <$ime step and {s easily
corputed using four very versatile subroutines descrited ia
detail iz the aext chapter.

The initial guess to start SCR is the previous time step
solutioa. An average of 32 vpasses per equation are a1eeded
for each time step. The salution 1is corsidered to have
ronverged to its final value when the residual for each rode
has been reduced to some acceptably small value,

The diagnostic equations III-7 through III-15 must also
be solved every time step. However, the same technique {s
not used for these equations. Dr. ».J.P. Cullen suggested an
urder relaxation scheme for whizh three passes over the
dcmain should produce a solution of acceptable accuracy,
si~ce the coefficieat matrix {is so stroagly dilagonally
dominant. Mass lumping cf the coefficient matrix is used for
the first guess. This technique requires replaciag tke rass
matrix "] by the identity matrix [I]. A first zuess of this
type i< 2able to descride most of the 1large scale <features,
which in turn reduces the number of iterative passes over
the field. Successive passes coaverge to solutioas which
descridbe smaller scale motion, approximately to the same
order of magnitude as {ntroduced by corputaticnal errcr, so

that further iterations are 20t a1eeded.
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Z. GRID GEOMETRY

8

The doralizn of this model is a cyliadrical chaznel, with
toetal length of 4245 Xm and width o 2822 Km. The channel
sirulates a belt around the earth aand it nroves to te aa
excellent test bed for comparing wita the finite element
forrulations used »y Zelley (157€) and Clder (1981).

The domain 1s subdivided into equilateral triergles as
shown in Fignure €. Most of the test runs for this thesis use
a 12x12 mesh which has 15€ nodes and 288 elements. This
irplerentation 1is 1ot restricted to one grid pattera. The
technique developed by Older (1S81) to wvary the nodal
georetry sroothly ¢to achieve areas of deaser and coarser
resclution is also implemented, as in a third grid rpattern
that varies the nodal geometry abruptiy. A4 shert discussion
of these nodal geometries with accompaning illustratiorns of
each {s preseated in Chapter VII, where the differeat test
cases are described.

Cyclic contiauity is assured in the x directicn 'ty
wrapping the doraia arocuad the earth to form a cyliadrical
dorain. This has the advantage of eliminating the east-west
toundaries aad it sirulates the flow arouad the earth. The
01ly bdoundaries c¢n this domain are the north-south walls and

their treatreat will be discussed shortly.
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F. INITIAL CONDITIONS

As mentioned previously, the reforrulatioa of the
gzveraine equations into the vorticity-divergence
shallow water equation set requires solrving the timre
dependent variadles in terms o2 the stream function and
velecity potential. The continuity equation {s net altered,
so that its solution is expressed in terms of 2.

For the basic testing of the model”s perforrance, sirple
analytic sinusoidal initial conditions are used to insure
the rost accurate analysis possibdle and to simplify the
corparisons.

The sinusoidal 4initial fields are graphically shown in
Figure 7 as 3-dirmensional surfaces. The geopotential field #
consist of a half sine wave in the y directicn and a sirgle
cosine wave {n the x direction. The stream function ¥,
calculated by dividiag the geopoteatial field by the
coriolis force, has the sare physical structure as §. The
velocity potential X has a . single siaze wvave ia. the x
direction and a half sine wvave in the y direction.

These {211tial coaditions are computed as follows

g = fo Asizn cosx, = foi.?(y - }'m) - §
Y = ¢g/f, I11-29
= Csinaisinaz guasi-geostrophic divergence
where A - ardbitrary amplitude

o - coriolis value for mid—-channel latitude
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b) X initial field.

Figure

+ 3-dimensional view of the inital fields.
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I reaz flow
a - mid-latitude value of y
} - mean free georoteatial height
= 45,008 m%/s 2
x, - ry /4
%y 2rxr/L
r - Wwave aumber
v channel width

o
[

channel length

¢ - -(2,To,Ba)/(f5 + §B)
3 - afd» °‘§

G. BCUNLARY CONLCITIONS

3sundary conditions are only required on tae north and
south wells of the grid dorain. Zue to cyclic contiauity,
the domain is wrapped arocunéd creating a cylinder eliminating
the east and west boundaries. Bowever, careful atteation to
detail is needed during the implementation to assure this
continuity. Separate boundary conditions are applied to each
of the predictor equations III-23, III-24 aad III-25. Thece
conditions are computed for the wall nodes only and are
applied during each pass through the relaxatioa scheme,

The vorticity equation III-24, the most sensitive of the
predictor equations to solve, requires ¥ oa the north-south
boundaries to remain constant for the entire forecast
period. Siace this -equatioa is solved ia terrs of ¥, the

iritial north-south ¥ values are saved and assigned to the




beundary points after each pass through the relaration
subroutine.
"he vroper boundary condition for the divergence
ecuation TII-25 would te 3X/dn = 2. Eowever, for the purrose
97 this study, there 1s more interest in the sinusoidal
variation in the y directicn and not {n the region of the
walle. Therefore X = 2 is appropriate.
The continuity equation III-23, the most complex
oredictor equation, requires that there bte 210 mass flux
through the north-south walls. The geostrophic bdoundary
coadition
37
— = -uf, II1-3¢
dy

1s avplied to the north south boundary nodes for the terms

[BCRY] 1in equaticn III-23. Iategrating the ianner prcduct

<¢jrzvj,vi> by parts produces the boundary terms

2 i = .
’u’ v2g v v, axdy gx{v (eg 47,7, axdy

AT AR AP I AR

¢ Yy v(g475)e0 dr - Jl vV, ov(F;Vy) dxdy

[BORY] - d40<V gpaVye > + <Vyy 0Tyl I11-31
vhere 2 {5 a ualt vector aormal to the doraia aand dr is the
differential distance along the path of integration on the

perireter of the domain.
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The geostrovhic bouadary coadition III=-22 s substituted

ints the contour integral in equation III-31 and put 1ints

Jalerkxin forr, 42 the samrme way as iz the one-direasional
advective equation in Chapter II. The resulting term {is

derived as follows

3
! A — V.
fovgvigviar < SAyv T, e

o
24X

—(u, , *+ 2u, + u,
J

i

Icuation III-32 appears twice in the continuity equation
IIT 23, for time levels (a+1) aad (a-1). All values of u are
krown ‘or time (n-1), since they are saved from the previous
calculatioas. Fowever, u(2+1) has 1210t beea computed. To
solve for u(n+1), both ¥(n+1l) and X(n+l) are needed. ¥(n+1)
1s solved first from the vorticity equation. X(a+l) 1eeds
@(n+1) as part of its solution and Z(n+1) needs uln+l) in
its solution.. To avoid this prodler, it.is assumed that
X(r+1) has a negligidle <contribution to the solution of

u(a+l) and oaly Y(a+1) is used.
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IvV. CCMPUTTIR IMPITMENTATION

The formulation and general theory o2 the ‘inite slemernt
method was presented in the previous chapters. The obiective
ir this chapter is to discuss scre important comdutational
aspects vertaining to the irplerentation of the fiaite
elereat predictioa syster.

The mainr advantage that the finite element method has
over other predictioa techaiques is its geaerality.
Conceptrally, it seems possible by using many elements, to
approximate virtually any surface with comrplex ©bcecundaries
and initial conditions to such a degree that an accurate
sclution can be obdtained. In practice, however, obvious
ergineering limitations arise, a most important one being
the cost o2 the corputation. As the anumber of elereats 1is
iicreased, a larger arouat of computer time {s required for
a forecast. Turthermore, the linitations of the program and
the computer may preveat the use of a large numrber of
elerents. These limitations may be due to the corputer speed
ar? storage avallability, or round-off errors propagated 1in
the computations because of fiaite precision arithretic.
Also>, the malfunction of a hardware component, if the
prediction 1is <carried out usiag maay computer hours to
execute, can be a serious problem. It is therefore desiradle

to use efficient finite elerent programs.




The effectiveness c¢c? a program depends essentially or
the fcllowing facters. Tirstly, the use cf efficient fiaite
elarent “‘*echniques 1ic irpcrtant. Sezonily, efricient
pro&ramrring methods and scphisticated use c¢f tae availarle
corputer hardware and software are irporteat. Tke third very
irpcrtent aspect in the developreat c¢f a finite elerent
nrozrar is the use of appropriate aumerical techziques.

The vorticity-divergence model descrited in the previous
chapter is 4irplereated oa the I3M 3223 corputer located at
the Naval Postgraduate Scheol. Some aotatle features of 1its
architecture are the three trillion bytes of virtual mass
storage, 5? which eight mega dytes are available to each
user, 2nd the £7 nanosecond machine cycle tire. The model is
executed mostly using a 12x12 elemeat doraia requiriag 422k
bytes of storage aad 29 seconds of CPU tire to execute.
Exceedirg execution time and/or availabdble storage is not a
protler, in fact the syster allowed a 1lot of flexidbility
duriae the irplemeatation phase of the rodel.

The source code is written usinz TORTRAN IV arnd compiled
03 a1 optimiziag Fortraa B compiler. Apvendix A coatainzs the
source ccde listiag., which is divided into five subtdivisions

delineatiag the logical structure 2f the pregrar,

A. PROGRAM ARCEITECTURE
Prograr features iacorporated ia the model are:
1) Modularity. With only a few exceptions, each
rodule 1s 1imrited to one page of FORTRAN code. This makes it
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easier to comprehend the program. Zach module performs only
one task. Tcr exarple, snbroutine CONTIC comnutes the value
27 the forzing terms for the coatinuity equatisn. lixewise
there is also one mcdule for the divergence and vorticity
enuatiozs. To irplerent a new set of equations, oaly these
rcdiles would have to be 2ltered.

2’ Taelly controilable switckes. Switches may te set
ts 2ither print, plot or tabulate harmonic aralysis data for
rost of the available fields. The adbility to disvlay
intermediate resuvlts allows each portion of the algzgorithm to
te monitored for computational adjustments. This also makes
1t eacsier for unfamiliar users to become acquinated with the
corputational model.

3) Forcing term  subroutines. Ia  previous
irplerentaticns. each forcinag term was calculated ty a
speciel subroutine. Ia this implementation, the calculatioas
are accomplished by general purpese routines which simplify
the i{rplementatioa of the ctorplex prognostic:equations.: This
allows 1implementation of different equation sets (i.e.

3Jarocliatc Model) over the sare domaia with minimal effort.

4) Dccurentation. EFach variadle is defined bty a

skort pkrase (Appeadix A, A.). The functioz of each rmrodule
is described in an introductory paragraph. Shared data is
placed 12 zared commoa bdlocks aad 1ideatified with each

sutroutire which uses them. A sudbroutine index is given.
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1. Maia Prograrm

The main program is short, calling only six modules
whi-h reflect the dYasic sequential flow cf the wodel. It
starts with {irnitialization of all model parameters (i.e.
rcdel options, domrmain, finite element arrays, izner
rroducts). It then {initializes the input fields (i.e.
gecepctential heights, strearmr faaction aad velocity
potertial) and 1s followed by 1initialization of all
reraining dependent variables. At this time the model s
totally initialized and time 1integration begins. As
reatioaed previously two techaigues are employed for tire
integration, each having its own module. Upon completion of
the last forecast, the program terrinates.

Arrays are the only data strvctures used and are
gronped usiag 16 different common tlocks. Several arrays are
used 2as static 1link 1lists, as descrided in detail later,
which sirplified the algorithms, The cormroa bdlock forrat has
the advantage o2 reducinz the overall execution time of the
proeram. Most of the arguments passed during a call to a
subroutine are coatained ia conroa. This requires less time
to execute since no parameter passing is required for the
ereurents, faother beanefit of this format is tkhat the code
Yecores less cumbersome and more readable. Each variatle and
array 1s defined 11 the first subsection of Appendix A along

with a page iandex for the subdroutines.
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2. Initializatioa Phase

Appendir A, Section C contains all the subroutines
used during the initializaticn pzrase of the oprogram. TFror
the user ©pnint of view, the most important suorocutine is
INITG2, the first subrcutine called, wnich contains all the
zlobal variables that control the differeat options
avajlarle per run. This is the o2ly subroutine that is
changed t¢ rua the differeat experirents, assurizg that 2o
rew comrmputational technique is introduced. The selection of
options are:

1) -~ channel 1location - the channel may bde
shifted north or south bdy presetting the
aorth/south latitude 1limits 12 INITG3,

2) variable geometry - the node positions may

te grouped for more dense anode patteras to

yield higker resolution. Two variatles R1

and R2 set the ratio wused to vary the

spacing along the b 4 and : y axes,

respectively.

3) - initial field wave length and amplitude can ;
te altered to produce varions effects. ;

4) chaage the iaitial meaa “low.

&) - diffusion can te entered for any of the
three proganostic equatioas.

€) - maximum length o® forecast periocd may be

chazged azd a oriat, plot or harroaic
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aralrysis of any dererdent variasle may be

requested for aay time iaterval.

Orze the -experirent 1s determined, the options
listed abdove are set. The prograr is ready to be executed.

"he largest part of the initialization rhase
sonsists of estadlishing the domaiaz and preducing all the
finite elerent computational vectors that reraia constaat
throughout the experiment.

The first several steps in settiang up the doraina are
concerned with indexing. Subroutine COPRES is called first,
where 2all the nodes (grid poiants) and elereants (triangular

areas) are aumbered coasecutively startiag at the southwest

-

corner of the domain and moviang eastward across each row or
latitude. TFor each "elemext;- a record of-all of its zodes
(ve-~tices) are stored in array ELMENT (™,3), where M is the

total aumber of elermeats. To facilitate the 1aaer voroduct

evaluation later, a local numbering system is required for
each elerent. That s, fcr each elemeat, its nodes are
stored counterclockvwise in a positive sense. The irst 2aode
however, is arbditrary.

With the édomaia divided and aumdered, a coazectivity
1ist (the correspondence between each node and the neighbor
a0des) is coastructed for each aode bdy sudroutine CORREL.
Fach node s adjaceat to four or six other nodes depeading
on whether it 1s a bdoundary or iaterior aode, respectively.

These ad jacent nodes, plus itself, make up the connectivity
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list for onxe n2ode. The <coaazectivity 1lists are thea
concatenated sequentially startiang with the first nodes
ronxectivity iict iato the vector NAME (NN), where NN is the
sum 0% the neodes in each ccanectivity 1list. (i.e. for a
12x12 doraia with 156 nodes, and equilateral elereats NN =
1744, Zor the first tire during the 1initjalization phase,
spe-ial attention is givea to cyclic czcontinuity. As
discussed earlier, cyclic contiaunity is the joiaing of the
east aad west boundaries to create a cylindrical chaznzel.
The connectivity list for these east/west bcundary ncdes
rust te corplete to {iasure proper coatiauity for the
ca tions later.

The connectivity vector NAME is frequeatly used
duringz mos¢t computations. Two utility vectors ISTART
(containing the startinzg locaticn in NAME for a particular
node! and NUM (containing the naumber of nodes 4in its
connectivity list) are used to locate and index through the
vector NAMI, ac¢ will be seea shortly. This same techaique is
used te index through the coefficieat matrices and used
duriaz most of the node iateraction computatioas.

The physical properties of the channel are
calculated =2ext {2 subroutine CHANAL. Eere the north aad
south latitude bouadaries, which vere pre-set in INITGE by
the user, are used to compute the zrid spaclag aloag the x
and y axis. Since this channel simulates a bdelt around the

earth. the magnitudes of both TELTAX aand TEFLTAY (meters) are
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proportional to the width of the charnel divided by the
aurter of grid points in the y axis.

The Cartesian coordizates for each node are computesd
»y subroutine LCCATE using the DILTAY and LILTAY calculated
in CEANAL. If the option to use varyirg zgrid geometry is
desired, subroutine TRANS transforms the grid georetry.
TRANS alsn computes the corresponding new Cartesian
coordinate values for each grid point aad calculates the
riaimur TELTAX and TELTAY withia the doraia. Whea the
georetry is changed to create a sraller DELTAX or DELTAY,
the two dirensional advective stability criteria is also
changed, A new time step DT has to tbte computed wusing
equation III-2€, Siace TRANS transforms the georetry, it
also computes the new [DT.

Another transforration {s required as discussed i
Chapter II. The transformation from Cartesian coordinates to
area coordinates 1is needed to perform the area integration
0f the 1inner products. Subroutine AREA computes -these
traasformations exactly as outlined 1a Chapter II, Section
C. Again cyclic continuity is very 4important and special
care is needed to iasure proper traasforrmaticn.

Following the area traasformatioa is the computation
of 2all the {nner products that are required to solve the
equations. The advantage of using area coordinates is that
the {inner produvcts (function of space coordinates only) are

corputed and stored ocnce and used repeatedly without
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recalcuvlation. Subdroutine INMER computes and stores these
products using the formulas derived in Chapter II.

The coeffi-ient matrix, dimensioned NxN, where N s
the total number of nodes, is a matrix of coefficients whose
rows are the -equatioas of the systemr to be solved. AS
discussed in the corputational technique secticn, the
rerters of this sparse matrix are the ianer products for the
left haend sides of the equations. Three coefficient matrices
are used i1 the solution of the equatioas. The diagaostic
equations (III-7 through III-18) use a coefficient rmatrix
with the 4inaner product «V j,Vi > which is coastructed by
subroutine AMTRY1 and stored in compacted form in vector
GINN) DYy subroutine ASEMBL., Eowever, whea solving the
proznostic equations, these coefficient matrices have a DT
ftire step i1 secoads) term, so that these matrices are a0t
acsserbled uwntil the time integration degins. The vorticity

aaxd divergeace equations (I111-24,III-25) use the coefficieat

matrix Z(NN) with {nner .pnoducts..(ij.vixknt.<ij§3>,in"“

solviag the Foisson equations for the stream fuaction aad
velocity potential, respectively. The continuity eguation
(I1I-23) uces a corbinatioa of 4iazer products ia 1its

coec®icient matrix F(NMN) as 2ollows
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te solve the Felrholtz equation, At the start of each time
integration module, subroutine AMTRI2 is called tc construct
the two coefficieat matrices B aad F.

These tanded and sparse ratrices are ccrracted iato
vectors to save storage duriag thelr assemblage by ASEM3L.
The vectors are dimeasioned NN, as is NAME, the coanectivity
vector, da1é both uce ISTART aaé NUM to iadex through them.
This comrpaction routine was used by Kelley (1976) and Older
71951) ia their models, but was developed by Hiasran (19795).

To illustrate matrix asserblage using an elerent DYy
elereat technique, consider Figure 8. Note that this
illustrationa is for elerent numder 3, dut all elements are
treated 12 a <imilar mraner. The computational techaique
required that for each point (node) descridbing elermeat 3,
1amely nodes 2, 3 aad 14 stored i1 array ELMENT, the inner

product <7 ,Vi> tetween those points be distrituted to their

proper locifion in the coefficieat matrix.

Sutroutiae AMTRX1 builds the inmer product nodal
iateractioa and stores it 12 matrix 3, dirensioned 3x3.
Figire 8 illustrates the B matrix for elerent 3, where the
ianer product <V j ,V1 > is the multiplicaad of the
corresponding baslis ard test functions, respectively.

The local dispeasing of 4iateractioas is done {2
ASEMBL. Consider the second row of [B] in Figure 8. These

are the iateractioas between n0de 3 of elemeat 3 to the test
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AMTRX - builds [B] for one element, passes [5] and the element number
associated with [3] to ASEM3L. This process continues till all element
node interactions are assembled in the coefficlent matrix,

22 Y2 Vol
[3], = (v, vV vy,

Yis¥a V¥ YV

EIMNER = )

ASEMBL - assembles the node interactions into the coefficient matrix
[c] , which has the same structure as MAME. The following diagram asseables
inner product VJVU‘ into the cosfficient matrix [C]. for element 3.

EDEIT
Lz 3 ISTART xun e ¢
il 1] 1 1 5|1 Lt cw) ] 1
2| 2{w|13 2| 6 2 2 c(2) | 2
EUER - 3| 2] 3 18] et 3| (1Dug®- 1+ 4(S)>= ST() [ 13 $(3) |3
sf 3 15n-1u- 4| 16 12
=~ 5| 21 5| 151 2
287 i1k 1145 156 6y 26 T 152 [
288 (144|133 (165 2031 (5] 15 1
— | 5 | 154 13
155{1035 [ 5] 155 ™
1561040 (5] 1% 101 3 c(10)] 10
SBEL pseudo-code START(3) »11 | 3 c(11)] 11
rdo i =1 -3 2 | 2 | c(12
11 = ELENT(1) { 3 3 | 1w e ge Cl13)ie %7,
14 15 c(14)
rdo § = START(11) -+ LAST(11) AST(3) «15 | 4 c(15)} 15
33 = ram(y) 4 c(16)] 16
rdo k =1 -»3 2 3
kk = SDENT(k) { 3 15
U 16
1f (kk = J3 ) then 2| 5 c(20)] 20
¢(J) = o(3) » 3(1.x) =
else continue 163 | %Oh'}
Lend do 155 c(1062)
Lond do 1063 |14k c(1043) 1043
Lend do touts |1us (10U ) 1064

62

Figure 8. Assembling and storing the coefficient matrix for element 3.




functicas. ASEMBL locates nodes 2°s connectivity 1list 1ina
NAMT wuseiag ISTART and NUM. In Figure &8, this list is
delineated by START(3) arnd LAST(3). Now ASEMBL steps tarough
the connectivity list for three {teratioas. Turiang each
pass. ASIMBL is searching for one of the three node numbers
for element 3. Whea a match is fouad with one of elemeat 3°s
nodes ‘i.e. 2,3 or 14) and node 3°s connectivity list (i.e.
2,2,14,15 or 4) the proper position, to which this
interaction 1s to be added has been found in the coefficient
ratrix. Since NAME and vector C, the compacted coefficieat
ratrix, are dimensioned idevtically, the sare poiater (i.e.
J 12 Figure 8) 1s used to iadex through bdoth arrays. This
procedure is repeated for all elements in the domain to
asserble the coefficieat matrix of the -equatioas. The
pseudrs~code for ASEMBL {is shown ia Figure 8 to facilitate
steppinag through this exarmple.

The domain and all finite element work vectors are

initialized at .this potat. Subroutinze ERMSET is _called later ._-:.

to compute interpolation points for the harmonic analysis
subroutines.

The last phase of the iaitialization process is the
initialization of the dependent variables. The three input
fields geopotential heights, stream fuactioa aad velocity
potential are computed iz subroutine IC using the equation
cet III-30. Bowever, the variadtles calculated fror the

diagnostic equations have to be computed using the input
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fields. These variabtles are used during each time step while
solviagz the vrogaostic equatioas.

The diasgnostic equations are solved ia subroutine
TEPYAR, first during the 1iaitializatica vphase and later
durirR the time integration phase. Each diagnostic equation
calls 1its own module to compute the value of the forciag
fun~tion and stores the computed values in the vector RES.
These equations all use the sarme coefficient ratrix whea
solving the diagnostic equations. Subroutine SOLVER is
sufficieatly genereal to solve each equatioza. SCLVER uses
vector RES and coefficient matrix G to wunder-relax towards
the solutioa. As meationed previously, the coefficient
ratrix is strongly diagonally dominant so that three passes
over the domaia are sufficieat. At the ead of TEFVAR, output
is generated depending oa what priat, plct, or harmonic
azalysis coatrols were preset.

This corpletes the initialization pnase of the model
aazd the program for the forecast phase will bhe describded

next,

3. Forecast Phase

The forecast phase is accomplished in two steps. The
first time step is made using two half steps by subtroutine
MATINO. FEere the progaostic coefficieat matrices are
constructed using half the IT value by calling AMTRX2.
AMTRXZ yces the same computational technique to construct

the coefficient ratrices as described for AMTRIL.
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Fach of the prognostic equations III-23, III-24 and
I11-25 calls its cwn subroutine (CONTEC, VORTEC and TLIVEC
respectively) to <compute all the terms on the right hard
side, which are stored in the vector RES. After computations
for BEES are completed, subroutine RELAX solves the equatiorns
ty cver-relexaticn as described in the comnutational
technigue 4in Chapter 3. Oace the solutions for the ‘a+l)
tire step are comoleted, DEPAR is called te¢ update the
variables from the diagnostic equatioas. Twec passes through
MATINO advances the solution fields one time step.

The remaiader of the forecast period 1is 1iategrated
using the leapfrog scheme. Sudroutine LIAPFR performs this
iategration usiag the ideatical format as ™“ATINO, except
that IT equals two DT. At opreset times as specified in
INITGE, the differeat fields are saveéd for priatiag. TRkis

process continrues until the final forecast time is reached.

£, UTILITY MOTULES

Cnce the equatior formulation is completed, as in
Zhapter 1III, all the {ianer products and types of
fategrations are xnown. Versatile modules can be written to
perform these computatioas. Consider a term of general form
<Aj Vj V,> vhere { 1is the node about which the term is
evaluated and the j“s are the nodes coanected to node i, or

the surroundiag nodes. The inner product values <V .V1> are

J
already computed and stored for all the 1o0des, during the

ia1t4alization rhase of the model.




—————
T

The remaining computation to complete tae evalvaticrn of
this term is the multiplicatioca of the scalar coefficient of
4 3t pode } with the corresponding inner product <Vj.vi> for
node !. This requires indexing thrcugh node i°s ccanectivity
list stored in vector NAME, and for each node in the 1list
rultiply ané total the products. The curulative sum of these
vrltiplications 1is assigned as node i°s zontridution for
this terr. Subroutine TERM3 performs this exact computation.
All that is passed to TERM3 is the scalar field A and the
siegn of the 4inaer product, TERMZ then corputes the
contribution for each node in the cdomain and accumulates it
in the work vector 28BS,

Three other utility modules are; TERM1, which computes
the first scalar rultiplication for triple i{aner products
fi.e. (AjVjBka,Vi>). The product <vjvk.g?, is agaia already
corputed and stored by subroutine INNER. TERM1 ccmputes <3k7j
Yk V34> aad construct- a compacted vector similar to the
coesficient matrices. This reduces the effort of multiplying
the secoad scalar to a TERM3 computation. TERM2 computes
node interaction of the following type <Aj Vix Wix>+ where both
the bYasis and the test functions are derivatives. Lastly,
subroutine TERM4 computes node interaction for terms as <A.jvjx
,vis, vhere only the basis fuaction is a derivative.

When examining the right hand side of the equatién sets
I11-23, I1I-24 and III-25, it is odbvious this implementation

1¢ a sudscripting nightmare; however, the use of the utility

€6




modules TERM1, TERM2, TERM3 and TERM4 simplifies the
irplereatation to oaly determiaiag what order to <call the
utility modules. ZIxamination of subroutines CONTEQ, VCRTEQ
and ILIVEC, which compute the right haad sides for III-23,
III-24 and III-2% respectively, illustrates this fact. No
other subdbroutines or calculations vere required.

Ivplementation of these equations required minimal effort.

S—— I e e - | Tev———

REE VPTG VI W v




v. PRIMITIVE MODIL EXPEIRIMENT

The previous two chapters preseated tkhe detailed
formulatior and irplementation of the vorticity-divergence,
shallcw water equation model. The results fromr tkis model
will be compared with the results from the primitive model
in Chavter VII. To facilitate interpretation of the
corparisons, a brief description of the »primitive model
follows. See Xelley (197€) for a detalled discussioa cf the
eatire mrodel.

Also presented in this chapter is an experiment which
deroastrates significaat {rprovemeat of thke solution from
the primitive model. Kelley’s implementation used elerents
vhich were right triangles. Older (1681) showed that
equilateral elements are far superior to triangular
elereats. This experimeat re implements the priritive model
using equilateral elements and a comparison is made Ddetween

the results of doth implementations.

A. MCIZL TESCRIPTION

A forr of the barotropic, shallew water, crimitive
equations developed by Phillips (1959} is used as the
governiag equation set for this model. In Cartesian

coordinates the equation set is
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g ? 3

— = = = (uff) - = (vp) V-1
3t dx dy

du > du du

—— F - m=m ey — -y — ¢+ Vf V-2
3t x 9x dy

v 37 v dv
—_— == — - — =~V — =uf, V-3
2t dy ax dy ‘
The fiaite element formulation of this set of equatioas
evaluates the height anéd veloclity components at the same
nodal points. This is an important <consideration, bYHecause
the other models (the linearized model, see Chapter VI, and
the vorticity-divergence wmodel, see Chapter III) either
stagger the dependent variables or have the property of a
staggered formulation. ¥hen comparisoas ars made betweea the
models, 1t 1s this lattice structure that is bdeing compared.
This form of the shallow water equatioas includes
gravity waves as a solution. Gravity waves have a maximum
phase speed of about 3¢¢ meters/secoad. Whea the correct
time step i1s calculated using equation III-2€, a
coasideradly smraller tire step is cdtained compared to the
larger time step permitted 4in the <vorticity~-divergence
fcrrulation. This is an important feature. If solutions from
a1l models are equally as good, the best formulation would
be determined using the computational time required to

produce the desired forecast.

€9




e e = — o -

All moldels use the same domain structure., In Z2act, the

decrain cdescribed 4ia Chapter III was patteraed after the

sk

omain implemencted by Kelley. Azalin, this domain simulates a
belt around the earth, with cyclic coatiauity which
eliminates the east-west Dboundaries. Rigid bvoundary walls
exist at the equator and at 20 degrees north latitude. The
domain 1s composed of a 12x12 polnt mesh and subéivided into
the right triangular elements 4{llustrated 1ia Figure S.
Notice that the grid points are not shifted as in the
equilateral element implerentation shown in Figure €.
The ¢sllowing boundary conditions are imposed:
1) - 20 cross chaznel flowv at the latitude
boundaries.
2) - a geostrophic balance at the chanael walls
imposed on the continuity equation V-1.
This model has & simple second order diffusive term in

the equations of motion V-2 and V-3. However, for the

purpose of evaluating theser different formulatioms, this

option was 20t implemeated duriag the comparison phase.
Initial conditions consist of & single wave in the x
direction and & half wave i1 the y directioa. The ianitial
fields %or the three dependeat variables are shown in Figure
12. The raximum zonal wiad perturdatioa of 5.5 meters/cecoad

i{s superimposed on & mean zonal flov of 10 meters/second.
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Domain divided into right triangles.

Figure 9 .
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Figure 10. Initlial flelds for the primitive model. Both the x and y

axes are multiplied by 10“ Km, 4
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This cursory description of the primitive model meations
only those significant features that will weigh heavily 12
the cecrparisions later. The Galerkin implementation 57 this
rodel is similar to that preseated ia Chapters II axd 1III
and the system of equations is solved using a Gauss—Seidel
iterative procedure. Further details conceraing this

primitive model are given in Kelley (1976).

B, RESULTS

This experiment involves the shape o? the elements. As
rentioned previously, Kelley’s implementation subdivides tke
domain into right triangular elements, as i{llustrated |{in
Figure ¢&. Consideradle small-scale noise was observed bdy
Xelley 42 the 48 hour forecast solutioa.

The transitioan from right triangles tc -equilateral
triangles chaages the size of the domaia. W¥With rizht
triangles, theasx andsy @rid spacings are equal (220 KM). A
12x12 grid matrix -has a leagth and width of 3602 IM.; With
equilateral triangles, thesx and sy grid spacings are no
loagzer equal. Arditrarily, the ay grid spaciag 1is held
constant (300 KM) ard a newax grid spacing computed by

ax = ay/cos(32) V-4

A 12x12 grid matrix with equilateral elerents has a width of
3€60¢ KM and a leagth of 4945 KM,

Figure 11 contains the 48 hour forecasts produced wusinag

botk types of elemeats. The three dependeat variables fields
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Figure 11. 48 hour forecast comparison from the primitive model using
both right triangles and equilateral triangles ior element shapes.

Arbitrary perturbation amplitude of 5.5 m/s.
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are compared for each. The small-scale noise that Zelley
chserved s present. The three fields shew varying degrees
¢® distortions, which are especially aoticeadble alorg the
boundaries.

Clder (1681) fouad that thefoot meaa square error (2MSE)
was reduced 22 percent by using equilateral shaped elements.
This 1irprovemeat 1is appareat o viewing Figures 11%, 4 and
f. The contours are smooth and the boundaries are
ncise free. Kelley showed excellent treatment of wave
propagation by this primitive model. The 1lowest resolution
grid '€x6) tested by Kelley vas within four percent of the
trne phase velocity. Changing the element shape had 1o
apparent effect on the phase velocities.

Eecause the outcome of this experirent was a
significaatly irproved forecast solutioa, future comparisoas
with the primitive model will be made using equilateral

elements.
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ke n~revious chatter farozstrated anw tiLe skane of tre

lerent ~an sigrifizantly improve the sclution., Williars and

)

Tisnviewicz (1651) useé Z2ifferently siened thasis functicns
cn 2 lirearized eaqrvaticr set t2 troduce excellent solutions

when 2cplied to the gecstrophic adjustrent rrotler.

n
je
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al staggering o? dependeat variables {in ‘finite
difference fcrruletions has given muca tetter scluticas te
the zeostroohic adjustreat vprocess, é&ndéd these forms are
widely used in meteorology. Schoenstadt {1932) “cund sirilar
results with fiaite elereat formulations with piecewise
lirnee~ bascis frnctions, Zowever, stagzerinzg ncdal oolnts is
ot 2 convenieat retkod to implerent, espezially in2
tws-dire~cions with irregular Doundaries, so alternative
s~heres are needed,

The irplerentation of the alteraative szcneme intrcdéuced

v villiers and Zienkiewicz (1¢81) are preseated {1 tais
~hanter. :s reationed adove, thic Zormrulation uses different

basis functions for the helght cad tae velecity fields. One
n® the basle funections ic piecewice linear, waile the osther
is pie~ewise ccastant, as is illustrated in Fizure 12 fcr a

ora dimensinnal domain.
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a) Piecewise linear basis function.
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b) Plecewise constant basis function.

Figure 12 .

Different shaped basis functions.
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A. ICUATION REFFORMULATION

“he primitive form of the shallow water -equations
oreseated {21 Chapter V (V-1,V-2 and V-3) is used to derive
the linearized equaticns needed fcr this experimrent. The
velocity egquatioans V-2 aad V-3 rerain uachanged aad a lizear
basis function (vj ) 1is used to approximate the u and v
variables.

The continuity equation V-1 {s linearized as fcllows:

24 3 ) 3u  dv
— 2 m g =y - — =) vIi-1
ot X y ox oy

negligible

wvhere @ i1s the averaze geopoteatial over the domaiz. &
piecewi se constant basis function (\vI‘j ) is used to
approximate the geopotential. This linrearization is
reasonadle in this case Dbecause the Rossby radius of
deforration thfgis much larger than ax [(see Williams and
Zienkiewicz (1981)]. The Galerkin method is applied to.this
linearized equation set using a plecewise 1linear test
fuactioa for V-2 and V-3, and a plecewise coastaat test
function for VI-1,

The vpiecewise coastant basis 2uactioa has the oproverty
of displacing the geopotential to the centroid location of
the elerents, which should give the same effect as
staggering 